区域金融发展与经济增长关系的实证研究 金融发展与经济增长关系的实证

来源:IT计算机 发布时间:2019-07-18 05:34:32 点击:

  一、引言   经济学界对金融发展与经济增长之间关系的研究由来已久。古典经济学家的研究表明金融发展与经济增长之间没有必然的因果联系,经济增长并非由金融发展来决定,同时经济增长对金融发展的支撑作用也不明显。当代的研究结果认为金融发展在经济增长中发挥了重要作用,既有学者认为金融发展促进了经济增长,也有实证研究证明经济增长与金融发展存在互相抑制作用。近年来国内学者对经济增长和金融发展的关系研究尚处于初级阶段。
  杜朝运(2007)建立了一个动态模型分析区域经济增长与金融发展的协调关系及相互之间的影响,认为金融发展与经济增长存在许多的最优组合点,这些点构成一条最优路径曲线。金融发展与经济增长之间的配合程度越高,组合点离最优路径曲线的偏离度越小。王景武(2007)利用误差修正模型对我国省区的时间序列数据进行了实证分析,研究表明我国东部地区金融发展与经济增长之间存在正向促进关系,西部地区存在相互抑制关系,而中部地区金融发展与经济增长指标变量之间不存在长期均衡关系。尹优平(2008)利用我国各地区1978-2005年的数据,采用固定效应模型以控制各地区存在的固定效应,研究发现改革开放以后,中国中部地区的金融发展对经济增长促进作用最大,其次是东部以及东北地区,最小的是西部地区。另外,宾国强(1999)、谈儒勇(1999)、韩廷春(2001)、周立(2002)等的研究也得出了很多有意义的结果。
  从现有的文献资料来看,国内一些学者在我国整体或大经济区域层面分析了金融发展与经济增长之间的关系,而进一步深入到地区层面的研究却很少,因此,省域、市域和县域金融发展与经济增长之间的关系将是未来区域金融研究的重点方向之一。本文利用误差修正模型(ECM)对成都市的时间序列资料进行了实证分析,以期对区域金融发展与经济增长之间的内在关系做出准确的判断。
  二、实证方法与指标选择
  本文将使用时间序列分析法对成都市区域金融发展与经济增长的时间序列数据之间的内在关系进行分析,为防止指标数据时间序列非平稳所引起的“伪回归”现象,本文将首先利用最新的时间序列计量分析方法――协整检验判断各变量之间的长期均衡关系,进而建立误差修正模型分析变量之间的内在作用机理,最后运用格兰杰因果检验方法探索各变量之间存在的因果关系。
  在区域金融发展指标的选择上,国内学者一般采用银行的存贷款之和占国内生产总值的比率,如谢平(1992)、张杰(1995)和易纲(1996)等等。出于数据可得性的考虑,本文也将主要选取成都市各金融机构的存贷款总额与成都市GDP的比例(Finance)作为衡量成都市金融发展水平的指标。另外,本文选取成都市的人均GDP(Growth)作为衡量成都地区经济发展水平的指标。
  考虑到1987-1990年我国处于计划经济时期,计划机制影响经济体系的运行,而20世纪90年代后资源配置的主体为市场经济体制,所以为保证金融发展对经济增长影响的前后一致性,排除因经济体制变动导致金融发展与经济增长指标的大幅波动因素,本文在研究时段的选择上将主要选取各指标1991-2009年之间的数据进行分析。
  金融发展与经济增长的指标数据主要来源于1991-2009年的《成都市统计年鉴》,并采用了成都统计信息网(http://www.cdstats.chengdu.省略/index.asp)的部分公告信息,保证了指标数据的质量和可信度(见表1)。为了剔除成都市金融发展与经济增长之间可能存在的异常关系,本文在实证过程中将对各指标数据进行对数处理,以平滑时间序列间的指数关系并消除异方差。
  三、实证检验
  (一)单整检验
  首先采用增广迪基-富勒(ADF)检验对所有变量进行平稳性检验,然后采用麦金农临界值对检验结果进行判断,对数处理后的成都市Finance和Growth变量的单整检验结果表明,Finace、Growth变量序列和其一阶差分序列均不能通过90%的置信检验,但其二阶差分序列均可通过置信度为99%的平稳性检验(见表2),即两变量均为二阶单整序列。
  (二)协整检验
  一般地,如果序列X1t,X2t,…,Xkt都是d阶单整,存在向量α=(α1,α2,…,αk),使得Zt=αX′t~I(d-b),其中,b>0,Xt=(X1t,X2t,…,Xkt)′则认为序列X1t,X2t,…,Xkt是(d,b)阶协整,记为Xt~CI(d,b),a为协整向量(cointegrated vector)。由此可见,如果两序列都是2阶单整序列,而且可以证明它们有一个线性组合构成的新序列为0阶单整序列,就可以认为该两序列具有协整关系。
  由于Growth、Finance的二阶差分序列均已平稳,可以判定两变量为二阶单整变量,满足协整检验前提。通过以Growth为因变量、Finance为自变量对其对数时间序列进行线性回归,并对得到的残差序列进行单整检验发现,其残差序列能够通过置信度为95%的平稳性检验(见表3)。因此,Growth与Finance变量具有协整关系。
  (三)误差修正模型(ECM)
  误差修正模型(Error Correction Model,简记为ECM)是一种具有特定形式的计量经济学模型,它的主要形式是由Davidson、 Hendry、Srba和Yeo于1978年提出的,常称为DHSY模型。
  由于变量Growth、Finance具有协整关系,对其进行均衡误差修正模型(ECM)检验,结果如下:
  ΔG=0.501703-0.122242ΔF+0.688504G(-1)+0.219099F(-1)-0.748648G(-2)-0.103403F(-2)
  (1.458074)(-0.979581) (2.542753)
   (1.238088) (-2.783060)
  (-0.668291)
  R-squared=0.733732;Durbin-Watson stat=2.469150;F-statistic=6.062351
  上述误差修正模型结果表明,成都市金融发展对经济增长具有一定的抑制作用,也即Finance每提高1%会引起Growth下降0.12%,但Finance的滞后变量对经济增长存在一定的正向影响。
  (四)格兰杰因果检验
  格兰杰因果检验的思想精髓在于,如果x先于y出现,而且在加入x滞后项的回归模型中,x滞后项统计显著,并且能够提升整个模型的解释水平,则我们称A是B的格兰杰意义上的原因。
  对Growth和Finance时间序列进行格兰杰因果检验,同时考察两个指标的不同滞后期之间的因果关系,分别选取Finance一阶差分的滞后1期、2期和3期与Growth变量进行格兰杰因果检验,结果如表4所示。
  格兰杰因果检验表明,Finance的一阶差分的2阶滞后变量是Growth一阶差分的格兰杰原因,而Growth的一阶差分的3阶滞后变量又是Finance一阶差分的格兰杰原因。由此可见,成都市金融发展与经济增长之间存在一定的双向因果关系。
  四、结论
  从实证结果来看,成都市金融发展与经济增长之间存在相互抑制关系,而且也存在格兰杰意义上的因果关系。本文的研究表明成都地区金融发展对经济增长的促进作用受到了Rioja和Valev(2002)所说的“门槛效应”的制约,即金融部门只有发展到一定规模(跨过“门槛”)时,金融发展才会对经济增长呈现出明显的促进作用。而跨过“门槛”之前,金融发展对经济增长的影响可能是并不显著的促进作用,也可能是负作用。
  实际上,成都地区金融发展与经济增长之间存在的互为因果的关系,进一步说明了成都市金融体系在资本配置中还有更多的发挥空间。成都地区应大力发展区域资本市场,积极加快金融部门的发展,不断扩大金融部门的规模,持续提高金融部门的效率。随着金融系统商业化和市场化改革进程的不断加快,区域金融部门积极履行以市场为导向的金融资源配置职能,可以预见,成都地区区域金融发展对经济增长的促进作用将会越来越大、越来越明显。
  参考文献:
  1、王景武.中国区域金融发展与政府行为:理论与实证[M].中国金融出版社,2007.
  2、张世英,许启发,周红.金融时间序列分析[M].清华大学出版社,2007.
  3、尹优平.中国区域金融协调发展研究[M].中国金融出版社,2008.
  4、范祚军.区域金融调控论[M].人民出版社,2007.
  5、曾康霖.二元金融与区域金融[M].中国金融出版社,2008.
  (作者单位:中国建设银行四川省分行)

推荐访问:经济增长 区域 实证研究 关系
上一篇:多媒体教学需注意的几个问题:多媒体教学一体机多少钱
下一篇:最后一页

Copyright @ 2013 - 2018 四八文档网-文档下载,办公室文档软件 All Rights Reserved

四八文档网-文档下载,办公室文档软件 版权所有 沪ICP备09019570号-4